Simulation of Site-specific Irrigation Control Strategies with Sparse Input Data

نویسندگان

  • ALISON C MCCARTHY
  • NIGEL H HANCOCK
  • STEVEN R RAINE
چکیده

Crop and irrigation water use efficiencies may be improved by managing irrigation application timing and volumes using physical and agronomic principles. However, the crop water requirement may be spatially variable due to different soil properties and genetic variations in the crop across the field. Adaptive control strategies can be used to locally control water applications in response to in-field temporal and spatial variability with the aim of maximising both crop development and water use efficiency. A simulation framework ‘VARIwise’ has been created to aid the development, evaluation and management of spatially and temporally varied adaptive irrigation control strategies (McCarthy et al., 2010). VARIwise enables alternative control strategies to be simulated with different crop and environmental conditions and at a range of spatial resolutions. An iterative learning controller and model predictive controller have been implemented in VARIwise to improve the irrigation of cotton. The iterative learning control strategy involves using the soil moisture response to the previous irrigation volume to adjust the applied irrigation volume applied at the next irrigation event. For field implementation this controller has low data requirements as only soil moisture data is required after each irrigation event. In contrast, a model predictive controller has high data requirements as measured soil and plant data are required at a high spatial resolution in a field implementation. Model predictive control involves using a calibrated model to determine the irrigation application and/or timing which results in the highest predicted yield or water use efficiency. The implementation of these strategies is described and a case study is presented to demonstrate the operation of the strategies with various levels of data availability. It is concluded that in situations of sparse data, the iterative learning controller performs significantly better than a model predictive controller.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Safflower model for simulation of growth and yield under various irrigation strategies, planting methods and nitrogen fertilization

Development and use of crop growth models is an effective tool for agricultural planningand decision making in agricultural industry. Besides, the drought and limited supplies of waterin many areas of the world has increased attention to favourable strategies in farm managementsuch as efficient irrigation and planting methods. The objective of this study was to develop acrop model for safflower...

متن کامل

Face Recognition in Thermal Images based on Sparse Classifier

Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...

متن کامل

Towards Evaluation of Adaptive Control Systems for Improved Site-specific Irrigation of Cotton

Irrigation application in cotton crops is traditionally discharged at a constant rate for an entire field. However, not all plants in a crop may require the same amount of water due to the stochastic nature of the crop response and the spatial variability of environmental factors within the field. Control strategies are required to effectively manage spatially and temporally varied irrigation a...

متن کامل

Speech Enhancement using Adaptive Data-Based Dictionary Learning

In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...

متن کامل

Spatio-temporal agent based simulation of COVID-19 disease and investigating the effect of vaccination (case study: Urmia)

Proper management of epidemic diseases such as Covid-19 is very important because of its effects on the economy, culture and society of nations. By applying various control strategies such as closing schools, restricting night traffic and mass vaccination program, the spread of this disease has been somewhat controlled but not completely stopped. The main goal of this research is to provide a f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010